CS1-SG STRAIN GAUGE INDICATOR

DESCRIPTION

CS1-SG economic type Strain Gauge/Load Cell Indicator has been designed with high accuracy measurement, display and communication of DC signal $0 \sim 1.0 / \sim 4.0 \mathrm{mV}$ or $0 \sim 10.0 / \sim 40.0 \mathrm{mV}$.
\square The meter supports Field Calibration function. It can be calibrated with sensor (Load Cell/Strain Gauge) to meet machinery structure. They are also available 1 option of 1 Relay outputs, 1 Analogue output or 1 RS485 (Modbus RTU Mode) interface with versatile functions such
 as control, alarm, re-transmission or communication for a wide range of industrial applications.

FEATURE

\bullet Measuring load cell, strain gauge signal 0~1.0/~2.0/~4.0/~10.0/~20.0/~40.0mV/V(Specify)

- Field calibration with load cell or strain gauge to meet the system requirement
- Option available 1 of 1 relay, 1 analogue output or RS485(Modbus RTU mode)
- 1 relay can be programmed individual to be a Hi / Lo / Hi Latch / Lo Latch energized with Start Delay / Hysteresis / Energized \& De-energized Delay functions.
- Analogue output or RS 485 communication port in option
- CE Approved \& RoHS

- APPLICATIONS

- Testing Equipments for weight/force Measuring, Alarm or Communication with PC/PLC
- Weighting control for packing machine, filling machine.

ORDERING INFORMATION

TECHNICAL SPECIFICATION

Input

Measuring Range	Input Impedance	Excitation Voltage
0~1.0/~2.0/~4.0 mV/V	$\geq 1 \mathrm{M}$ ohm	$\begin{gathered} \text { DC } 5 \mathrm{~V}, 40 \mathrm{~mA} \\ \text { or } \mathrm{DC} 10 \mathrm{~V}, 40 \mathrm{~mA} \end{gathered}$
0~10.0/~20.0/~40.0 mV/V		

Calibration:
Field calibration:

A/D converter:
Accuracy:
Sampling rate:

Response time:
Display \& Functions
LED:

Display range:

Scaling function:

Decimal point:

Digital calibration by front key
Calibration with sensor input high \& low to meet system structure. And field calibration reset is not change the accuracy \& linear of factory calibration.
16 bits resolution
$\leq \pm 0.04 \%$ of $\mathrm{FS} \pm 1 \mathrm{C}$;
15 cycles/sec
High speed mode: can be 60 cycles/sec maximum (scale between:0~6000 digits)
$\leq 100 \mathrm{msec}$.(when the AvG = " 1 ") in standard

Numeric: 5 digits, $0.8^{\prime \prime}(20.0 \mathrm{~mm}) \mathrm{H}$ red high-brightness LED
Relay output indication: 1 square red LED
RS 485 communication: 1 square orange LED
E.C.I. function indication: 1 square green LED

Max/Mini Hold indication: 2 square orange LED
Down key function indication (Reset for Max. (Mini.) Hold /
PV Hold / Relative PV): 1 square green LED
-19999~29999;
Lo.5C : Low Scale; Settable range: -19999~+29999
H.SC: High Scale; Settable range: -19999~+29999

Programmable from $0 / 0.0 / 0.00 / 0.000 / 0.0000$

Over range indication:
Under range indication: Max / Mini recording:
Display functions: Front key functions:

Low cut:
Digital fine adjust:
ouFL, when input is over 20% of input range Hi - ouFL, when input is under -20% of input range Lo Maximum and Minimum value storage during power on. PV / Max(Mini) Hold / RS 485 Programmable Relative PV / PV Hold / Reset for maxi(mini) hold / Reset for relay energized latch programmable Settable range: -19999~29999 counts Pu.Pro: Settable range: -19999~+29999 Pu.5Pn: Settable range: -19999~+29999

Reading Stable Function

Average:	Settable range: $1 \sim 99$ times
Moving average:	Settable range: 1 (None) ~ 10 times
Digital filter:	Settable range: $0($ None $) / 1 \sim 99$ times

Control Functions(option)
Set-points: One set-point
Control relay: $\quad 1$ Relay, FORM-C, $5 \mathrm{~A} / 230 \mathrm{Vac}, 10 \mathrm{~A} / 115 \mathrm{~V}$
Relay energized mode: Energized levels compare with set-points: $\mathrm{Hi} / \mathrm{Lo} / \mathrm{Hi} . \mathrm{HLd} / \mathrm{Lo}$.HLd programmable Start delay / Energized \& De-energized delay / Hysteresis / Energized Latch
Start band(Minimum level for Energizing): 0~9999counts Start delay time: 0:00.0-9(Minutes):59.9(Second) Energized delay time: $0.00 .0 \sim 9$ (Minutes):59.9(Second) De-energized delay time: $0.00 .0 \sim 9$ (Minutes):59.9(Second) Hysteresis: 0~5000 counts

Analogue output(option)	
Accuracy:	$\leq \pm 0.1 \%$ of F.S.;
Ripple:	$\leq \pm 0.1 \%$ of F.S.
Response time:	$\leq 100 \mathrm{msec}$. (10~90\% of input)
Isolation:	AC 2.0 KV between input and output
Output range:	Specify either Voltage or Current output in ordering
	Voltage: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} / 1 \sim 5 \mathrm{~V}$ programmable
	Current: $0 \sim 10 \mathrm{~mA} / 0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$ programmable
Output capability:	Voltage: 0~10V: $\geq 1000 \Omega$;
	Current: 4(0) 20mA: $\leq 500 \Omega$ max
Functions:	Ro.H5 (output range high): Settable range: -19999~29999
	Ro.L 5 (output range Low): Settable range: -19999~29999
Digital fine adjust:	Ro.Pro: Settable range: -38011~+27524
	Ro. 5 Pn: Settable range: -38011~+27524

DIMENSIONS

INSTALLATION

The meter should be installed in a location that does not exceed the maximum operating temperature and provides good air circulation.

■CONNECTION DIAGRAM

Please check the voltage of power supplied first, and then connect to the specified terminals. It is recommended that power supplied to the meter be protected by a fuse or circuit breaker.
Power Supply

RS485 Communication Port

[^0]
FUNCTION DESCRIPTION

Input \& Scaling Functions

Scaling function:

Setting the [Lo.SC] (Low scale) and [H.SC] (High scale) in [inPUt [roliP] to relative input signal. Reverse scaling will be done too. Please refer to the figure as below,

Display \& Functions

Remote Display by RS485 command -5485:
The meter will show the value that received from RS485 sending. In past, The meter normally receive $4 \sim 20 \mathrm{~mA}$ or $0 \sim 10 \mathrm{~V}$ from AO or digital output from BCD module of PLC. We support a new solution that PV shows the value from RS485 command of master can so that can be save cost and wiring from PLC.
Front key functions: Relative PV / PV Hold / Reset for maxi(mini) hold / Reset for relay energized latch programmable in [dn.UE Y] function of [inPUt GrouP]
Relative PV $-E L . P_{U}:$ The [dn.UEY] function can be set to be rEL.PU function. (Tare function)

PV Hold Pu.HL_d: The [dn.UEY] function can be set to be Pu.HLD function. When user press the Fkey, the display will be hold until press the ${ }^{-1} k$ key again

- Please find the \square ITHsticker to stick on the right side of square green LED.

Reset for Max(Mini) Hold n̄r St:
when the [dSPLY] in [inPUt GrouP] set to be FR4.Hd or $\overline{\mathrm{r} i n . H d}$, [dn.UEY] function can be set to be $\overline{\mathrm{n}} \mathrm{r}$ St to reset the display when it is holding in maxi or mini value.

Max. (Mini.) Hold \& Reset

Reset for relay energized latch -y.r 5t:
when the [ry ind]in [rELRY Groul] set to be H.HLd or o.HLd , [dn.LEY] function can be set to be - Y.r St to reset the relay when it is energizing and latching.

Low cut:
If the setting value is positive, it means when the absolutely value of PV \leq Setting value, the display will be 0 . If the setting value is negative, it means when the PV under setting value ($\mathrm{PV} \leq-$ Setting value), the display will be setting value.

Digital fine adjustment:
Users can get Fine Adjustment for Zero \& Span of PV by front key of the meter, and "Just Key In" the value which user want to show in the current input signals.
Especially, the [Pu.?ro] \& [Pu.5Pn] are not only in zero \& span of PV, but also any lower point for [Pu.?ro] \& higher point for [Pu.5Pn]. The meter will be linearization for full scale.
The adjustment can be clear in function [P.S.[Lr]

Reading Stable Function
Average:
Basically, the sampling rate of meter is 15 cycles/sec. If the function set to be 3 times, It means the meter will update of display will be 5 times/sec.

Remark: The higher average setting will cause the response time of Relay and Analogue output slower.

Moving average

If the function to be set 3 times, the meter will update delay in first 3 samples, then it will update 15 times/sec continuously.

Remark: The higher moving average setting wouldn't cause the response time of Relay and Analogue output slower after first 3 samples.
Digital filter:
The digital filter can reduce the magnetic noise in field.

Control Functions(option)

Relay energized mode: Hi/ Lo / Hi.HLd / Lo.HLd programmable
Hi H,(Fig.1-(1): Relay will energize when PV > Set-Point
Lo Lo(Fig.1-(2): Relay will energize when PV < Set-Point

Hi.HLd H.HLd (Lo.HLd Lo.HLd)
When the PV is Higher (or lower) than set-point, the relay will be energized and latch until manual reset by from key in [user level] or press down key to reset(If the [dn.UEY] function set to be -y.r5t

Energized functions: Start delay / Energized \& De-energized delay / Hysteresis

Analogue output(option)

Please specify the output type either an o~10V or $4(0) \sim 20 \mathrm{~mA}$ in ordering. The programmable output low and high scaling can be based on various display values. Reverse slope output is possible by reversing point positions.

Output range:
 Voltage: 0~5V / 0~10V / 1~5V programmable
 Current: $0 \sim 10 \mathrm{~mA} / 0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$ programmable

Functions:

Output range high $\mathrm{Ro}_{\mathrm{o} . \mathrm{HS}}$
Setting the Display value High to versus output range High(as like as 20 mA in 4~20
Output range low Ro.LS
Setting the Display value Low to versus output range Low(as like as 4 mA in 4~20)

The range between Ro.HS and RoL 5 should be over 20% of span at least; otherwise, it will be got less resolution of analogue output.

RS 485 Communication(option)
The RS485's protocol is Modbus RTU mode, and baud rate up to 38400 bps. It's convenience to remote monitoring, display for reading.

Remote display:

The meter will show the value that received from RS485 command. In past, The meter normally receive $4 \sim 20 \mathrm{~mA}$ or $0 \sim 10 \mathrm{~V}$ from AO or digital output from BCD module of PLC. We support a new solution that PV shows the value from RS485 command of master so that can be save cost and wiring from PLC.
When the [SSPL 4] set to be RS485, it means, the PV screen will show the number from RS485 command \& data. The data (number) will be same as PV that will compare with set-point, analogue output and ECI functions so that is to control analogue output, relay energized and so on.

Calibration System calibration by front key. The process of calibration, please refer to the operating manual

Field Calibration

In pass time, engineers have take a lot of time to adjust meters or converter to meet the structure of machinery zero and span for the Load Cell measuring. Now, our CS1-SG support easier process to do it called "Field Calibration".
Please accord to the numbers to do the field calibration
($1 \Rightarrow$ 2 \Rightarrow 3 $\Rightarrow 4 \Rightarrow 5 \Rightarrow 6$)

Optional Function

Customize function with quantities is welcome. Please contact with our sales for detail. The appendix code of optional function will be added behind the code of auxiliary power.

ERROR MESSAGE

BEFORE POWER ON，PLEASE CHECK THE SPECIFICATION AND CONNECTION AGAIN．
SELF－DIAGNOSIS AND ERROR CODE：

DISPLAY	DESCRIPTION	REMARK
ouFL	Display is positive－overflow（Signal is over display range）	（Please check the input signal）
－ouFL	Display is negative－overflow（Signal is under display range）	（Please check the input signal）
ouFL	ADC is positive－overflow（Signal is higher than input 120\％）	（Please check the input signal）
－ouFL	ADC is negative－overflow（Signal is lower than input－120\％）	（Please check the input signal）
EEP \Rightarrow FR L	EEPROM occurs error	（Please send back to manufactory for repaired）
R ，โ．nE $\Rightarrow P_{u}$	Calibrating Input Signal do not process	（Please process Calibrating Input Signal）
R，L $¢$ FR L	Calibrating Input Signal error	（Please check Calibrating Input Signal）
BoL．n¢ $¢ \mathrm{Pu}^{\text {¢ }}$	Calibrating Output Signal do not process	（Please process Calibrating Output Signal）
$\mathrm{ROL} \stackrel{\text { FR L }}{ }$	Calibrating Output Signal error	（Please check Calibrating Output Signal）

■ FRONT PANEL：

Numeric Screens
$0.8^{\prime \prime}$（ 20.0 mm ）red high－brightness LED for $42 / 3$ digital present values．
I／O Status Indication
－Relay Energized： 1 square red LED
RL1 display when Relay 1 energized；
－RS485 Communication： 1 square orange LED
COM will flash when the meter is receive or send data，and COM flash quickly means the data transient quicker．
－Max／Mini Hold indication： 2 square orange LEDs
W I displayed：When the display function has been selected in Maximum or Minimum Hold function．
Stickers：
Each meter has a sticker what are functions and engineer label enclosure．
－Relay energized mode：UH HI LD IL DO
－Down key functions mode：
IUIU PV．H（PV Hold）／Fire Tare／DI DI（Digital Input）
［．1．18 M．RS（Maximum or Minimum Reset）／
B．i．1 R．RS（Reset for Relay Latch）
－Engineer Label：over 80 types
Operating Key： 4 keys for 且 Enter（Function）／PShift（Escape）／

> Uup key / Pown key

Pass Word：Settable range：0000～9999； User has to key in the right pass word so that get into［Programming level］．Otherwise，the meter will go back to measuring page．If user forgets the password，please contact with the service window．
－Function Lock：There are 4 levels programmable．
－None nonE：no lock all．
－User Level USEr：User Level lock．User can get into User Level for checking but setting．
－Programming Level EnG：Programming level lock．
User can get into programming level for checking but setting．
－ALL ALL：All lock．User can get into all level for checking but setting．
Front Key Function：
 programmable．

OPERATING KEY

＊Please access to the Programming Level to check and set the parameters when users start to run the meter

- Operating Key： 4 keys for 葍Enter（Function）／园Shift（Escape）／园Up key／目Down key
- The meter has designed operation similar as PC＇s 国 \triangleq and Enter．In any page，press 葍key means＂enter＂or＂confirm setting＂，and press 是key means＂escape（（Esc］）＂or＂shift＂．

In Programming Level，the screen will return to Measuring Page after do not press any key over 2 minutes，or press for 1 second．

	Function Index	Setting Status
Enter／Fun key		

■ OPERATING DIAGRAM (The detail description of operation, please refer to operating manual.)

Plesae refer to operating manual for detail description

■ FIELD CALIBRATION

－Once the user select field calibration，the［Lo．5C］（step A－2） and $[H, S C](A-3)$ will be instead of［CRL．LS］and［CRL．H5］，and can not to be change．If user has to change the scaling，it＇s the only way to access field calibration level to set in ［CRL．L5］（step F－2）and［CRL．HS］（step F－4）．
－Please double check the［ Lo．SC］（step A－2）and［H．SC］（A－3）are correct after selection the dEFLE or F，ELd
FRE．L＿
Adjust the structure to be a lower signal output
status（or any lower status）and keep it in stable．
CRLLLo：Field Calibration Low

FR Adjust the structure to be a higher signal output LAL．H1 status（or any higher status）and keep it in stable． status（or any higher status）
［RL．H ：Field Calibration High
－Press to read signal of the higher status －Press again to finish the calibration higher point， and go to next page．
$\underset{4}{+}$
［GL．HE CRLHS：the value to be set is relative to Field Calibration higher point
－Press to set the value of Higher scale
0】 1吴

1
4
4

C．5EL：Calibration parameter selection

- Press to access the function and stand by selection
－Press园 or to select
（default：dEFLd）；
Settable：dEFLd／E，ELd
dEFLd（default calibration）F，ELd（Field calibration）

[^0]: Amend: 2010/4/26: Modify the range and terminals for DC power supply

