CS1-RI PULSE [FREQ.J Indicator

DESCRIPTION

CS1-F economic type Frequency Indicator has been designed with high accuracy measurement, display and communication of Frequency.
\square The innovation feature is auto-range input from $0.01 \mathrm{~Hz} \sim 100 \mathrm{KHz}$ (option $\sim 140 \mathrm{KHz}$) and the display resolution will auto-change to show the highest according to input frequency.
They are also available 1 option of 1 Relay outputs, 1 Analogue
 output or 1 RS485 (Modbus RTU Mode) interface with versatile functions such as control, alarm, re-transmission or communication for a wide range of panels and testing applications.

FEATURE

\bullet Measuring Frequency AUTO RANGE $0.01 \sim 100 \mathrm{KHz} / \sim 140 \mathrm{KHz}$ (optional) / Voltage pulse or sine wave (specify).

- Accuracy: $\pm 0.005 \%$; Display range: 0~99999; Decimal Point auto moving according to input frequency
- Option available 1 of 1 relay, 1 analogue output or RS485(Modbus RTU mode)
- 1 relay can be programmed individual to be a Hi / Lo / Hi Latch / Lo Latch energized with Start Delay / Hysteresis / Energized \& De-energized Delay functions.
- Analogue output or RS 485 communication port in option
- CE Approved \& RoHS
- APPLICATIONS
- RPM, Linear line speed of Machinery Measuring, Alarm or Communication with PC/PLC
- Testing Equipments for Frequency Measuring, Alarm or Communication

ORDERING INFORMATION

■TECHNICAL SPECIFICATION

Input

Input Frequency	Input Mode	Input Level
$0.01 \mathrm{~Hz} \sim 50 \mathrm{~Hz}$	Mech. Contact	
$0.01 \mathrm{~Hz} \sim 50 \mathrm{~Hz}$	NPN	High Level: $8 \sim 12 \mathrm{~V}$; Low Level: $0.0 \sim 4.0 \mathrm{~V}$
(with excitation supply 12 Vdc)		
$0.01 \mathrm{~Hz} \sim 100 \mathrm{KHz}$	PNP	High Level: over $2 / 3$ of input level $0.01 \mathrm{~Hz} \sim 140 \mathrm{KHz}$ (option)
	Voltage Level: under $1 / 3$ of input level	

rear terminal block.

Calibration:

Input range:
Accuracy:
Sampling time:
Response time:
Time out function:

Doesn't need calibration
Auto range: $0.01 \mathrm{~Hz} \sim 100 \mathrm{KHz}$ ($\sim 140 \mathrm{KHz}$ in option);
$\leq \pm 0.005 \%$ of $\mathrm{FS} \pm 1 \mathrm{C}$;
15 cycles $/ \mathrm{sec}(\geq 15 \mathrm{~Hz})$;
f cycles $/ \mathrm{sec}(\leq 15 \mathrm{~Hz})$
$\leq 100 \mathrm{~m}-\mathrm{sec}$ (when the AvG = "1")
Auto, Manual programmable, In manual mode, the period of time out can be set 0.0 sec 999.9 sec

Display type:

Display range: Resolution of PV: (Auto-Moving for d.p.) Compensation factor: Over range indication: Max / Mini recording: Display functions: Front key functions:

Low cut:
Digital fine adjust:

Down key function indication (Reset for Max.(Mini.) Hold

$$
\text { PV Hold / Relative. PV): } 1 \text { square green LED }
$$ RPM / RPS / Linear line speed / Frequency programmable 0.0000~99999 with auto moving of decimal point Decimal point will Auto-changed according to input Auto / Semi-Auto / Fix; 3 mode programmable Compensate error from 0.001~9.999 ouFL, when input is over 20% of input range Hi Maxi \& Mini Value of PV storage during power on. PV / Max(Mini) Hold / RS 485 programmable Relative PV / PV Hold / Reset for maxi(mini) hold / Reset for relay energized latch programmable Settable range: -19999~29999 counts Pu.Pro: Settable range: 0~+99999 Pu.5Pn: Settable range: $0 \sim+99999$

Reading Stable Function

Average: \quad Settable range: 1~99 times
Moving average: \quad Settable range: 1 (None) ~ 10 times
Digital filter: \quad Settable range: 0 (None)/1~99 times

Control Functions(option)	
Set-points:	One set-point
Control relay:	1 Relay, FORM-C, 5A/230Vac, 10A/115V
Relay energized mode:	Energized levels compare with set-points:
	Hi / Lo / Hi.HLd / Lo.HLd programmable
Energizing functions:	Start delay / Energized \& De-energized delay / Hysteresis
	Energized Latch
	Start band(Minimum level for Energizing): 0~9999counts
	Start delay time: 0:00.0~9(Minutes):59.9(Second)
	Energized delay time: $0.00 .0 \sim 9$ (Minutes):59.9(Second)
	De-energized delay time: $0.00 .0 \sim 9$ (Minutes):59.9(Second)
	Hysteresis: $0 \sim 5000$ counts

FRONT PANEL

■ DIMENSIONS

■INSTALLATION

The meter should be installed in a location that does not exceed the maximum operating temperature and provides good air circulation.

■CONNECTION DIAGRAM

Please check the voltage of power supplied first, and then connect to the specified terminals. It is recommended that power supplied to the meter be protected by a fuse or circuit breaker.

FUNCTION DESCRIPTION

Input Functions
Input range: Auto-Range: $0.01 \mathrm{~Hz} \sim 100.00 \mathrm{KHz}($ option 140 KHz),
The meter has been designed very wide input auto-range from $0.01 \mathrm{~Hz} \sim 100.00 \mathrm{KHz}$ (Option: $0.01 \mathrm{~Hz} \sim 140.00 \mathrm{KHz}$) that can cover almost any application for RPM, Linear Line Speed and Frequency. User doesn't need to specify the input range.
Auto range display: programmable between Auto Range / Semi-Auto Range / manual range, The description as below,
Auto range RUL o: The decimal point will be auto changed according to the input frequency so that keep reading in the highest resolution.
Semi-Auto range $5 \mathrm{E}_{\mathrm{n}}$, :
The decimal point will be auto changed according to the input frequency to keep reading in the highest resolution under setting position of decimal point, According to the setting of decimal point. So, it's possible to show "overflow", if the input frequency is over the display range.
Manual range $\overline{\mathrm{hR} \| \mathrm{UL}}$: The decimal point will be fixed

Time out of input:

In the case of low frequency, the meter can not to identify that is low frequency and no input until the next pulse input. Sometimes, it takes a long period.
The meter builds in a time out function to cut out the reading to be " 0 ". There are two modes $\overline{\mathrm{FAnHL}} /$ RUto can be programmed.
Manual $\overline{\mathrm{FRnLLL}}$: There is a period named to can be set from 0.0 sec ~ 999.9 sec . The reading will display " 0 ", when the next pulse doesn't input during the setting time.
Auto range RUL 0 : The reading will display " 0 ", when the next pulse doesn't input during the time that gave by formula of meter's firmware.
Period of time out: Settable: 0.0 sec 999.9 sec If the time out mode [, to.nd] set to be $\overline{\mathrm{hRnLL}}$, it's will be show out.

Display \& Functions
Max / Mini recording: The meter wills storage the maximum and minimum value in [user level] during power on in order to review drifting of PV. PV / Max(Mini) Hold / RS 485 programmable in [SSPL Y]
Display functions:
(Please refer to step A-07) function of [inPUt [rouP]
Present Value P_{u} : The display will show the value that Relative to Input signal. Maximum Hold $\overline{\mathrm{h} R} \mathrm{H} \mathrm{Hd}$ / Minimum Hold n in. Hd :

The meter will keep display in maximum (minimum) value during power on, until press front key to reset (If the down key function in [inPUt GrouP] has been set to $\overline{\mathrm{n}} \mathrm{r} \mathrm{St}$).
\rightarrow Please find the \quad...| sticker that enclosure the package of the meter to stick on the right side of square orange LED

Remote Display by RS485 command -5485:
The meter will show the value that received from RS485 sending. In past, The meter normally receive $4 \sim 20 \mathrm{~mA}$ or $0 \sim 10 \mathrm{~V}$ from AO or digital output from BCD module of PLC. We support a new solution that PV shows the value from RS485 command of master can so that can be save cost and wiring from PLC.

Front key functions: Relative PV / PV Hold / Reset for maxi(mini) hold / Reset for relay energized latch programmable in [dn.UE $\}$] function of [inPUt [rolip]
Relative PV FEL.PU: The [dn.UEY] function can be set to be -EL.PU function. When user presses the $\boldsymbol{\nabla}$ key, the display will show the differential value ($\Delta \mathrm{PV}$), until press Tkey again.

- Please find the sticker to stick on the right side of square green LED.
PV Hold Pu.HLd: The [dn.LEY] function can be set to be Pu.HLd function. When user presses the press the
- Please find the \square ITI sticker to stick on the right side of square green LED.

Reset for Max(Mini) Hold rr. 5 :

when the [$\triangle 5 P L Y$] in [inPUt [irouP] set to be $\overline{\text { aRh.Hd }}$ or $\overline{\mathrm{n}} \mathrm{in} \cdot \mathrm{Hd}$, [dn.LEY] function can be set to be $\overline{\mathrm{n}} \mathrm{r} 5 \mathrm{St}$ to reset the display when it is holding in maxi or mini value.
Max. (Mini.) Hold \& Reset

Reset for relay energized latch - $-4 . r 5 t$:
when the [r y ind]in [rELRY Groul] set to be H,HLd or Lo.HLd , [dn.UEY] function can be set to be -y.r St to reset the relay when it is energizing and latching.

Low cut:

If the setting value is positive, it means when the absolutely value of PV \leq Setting value, the display will be 0 . If the setting value is negative, it means when the PV under setting value (PV - Setting value), the display will be setting value.

Digital fine adjustment:

Users can get Fine Adjustment for Zero \& Span of PV by front key of the meter, and "Just Key In" the value which user want to show in the current input signals.
Especially, the [Pu.Pro] \& [Pu.5Pn] are not only in zero \& span of PV, but also any lower point for [$\mathrm{Pu} . \mathrm{P}_{\mathrm{r}} \mathrm{o}$] \& higher point for [$\mathrm{Pu}_{\mathrm{u}} .5 \mathrm{P}_{\mathrm{n}}$]. The meter will be linearization for full scale.
The adjustment can be clear in function [P.5.CLr]

Compensation factor: Settable range: 0.001~9.999
The factor is compensation of display. There are some applications that are indirect detection of sensor as like as Gear, wheel. User can set the factor to compensate the display.
User installs the proximity switch to detect the RPM of left wheel, and want to show the right wheel. It's easy to set the factor to do it.
Frequency: 50 Hz ; Left wheel: diameter: 1M; Right wheel: diameter: 0.35M

Set:
PV. type PutyP to be RPM rPi
Pulse/Rotation $P P_{r}$ to be 1 Pulse/Rotation
The meter will show 1480RPM of left wheel.
Set: FACtr to be $2.857(1 \mathrm{M} / 0.35 \mathrm{M})$, then the meter will show 4228.5 RPM for right wheel

Reading Stable Function

Average:

Basically, the sampling rate of meter is $15 \mathrm{cycles} / \mathrm{sec}$. If the function set to be 3 times, It means the meter will update of display will be 5 times/sec.

Average set to be 3

Remark: The higher average setting will cause the response time of Relay and Analogue output slower.

Moving average:

If the function to be set 3 times, the meter will update delay in first 3 samples, then it will update 15 times/sec continuously.

Digital filter:

The digital filter can reduce the magnetic noise in field.

Control functions(option)

Relay energized mode: $\mathrm{Hi} / \mathrm{Lo} / \mathrm{Hi} . \mathrm{HLd} / \mathrm{Lo} . \mathrm{HLd}$ programmable
Hi H_{1} (Fig.1-(1):
Relay will energize when PV > Set-Point

Lo Lo(Fig.1-(2):

Hi.HLd Hi.HLd (Lo.HLd o.HLd) :
When the PV is Higher (or lower) than set-point, the relay will be energized and latch until manual reset by from key in [user level] or press down key to reset(lf the [dn.EE Y] function set to be -Y.r.5t

Hi or Lo Energized Latch \& Reset

Analogue output(option)

Please specify the output type either an o~10V or 4(0)~20mA in ordering The programmable output low and high scaling can be based on various display values. Reverse slope output is possible by reversing point positions.
Output range:
Voltage: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} / 1 \sim 5 \mathrm{~V}$ programmable Current: $0 \sim 10 \mathrm{~mA} / 0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$ programmable

Functions:

Output range high Ro.HS
Setting the Display value High to versus output range High(as like as 20 mA in $4 \sim 20$)
Output range low RoLS:
Setting the Display value Low to versus output range Low(as like as 4 mA in $4 \sim 20$)

The range between Ro.HS and Ro.LS should be over 20% of span at least; otherwise, it will be got less resolution of analogue output.

Fine zero \& span adjustment:

Users can get Fine Adjustment of analogue output by front key of the meter. Please connect standard meter to the terminal of analogue output. To press the front key(up or down key) of meter to adjust and check the output.
Zero adjust [Ro.3ro]: Fine Zero Adjustment for Analog Output; Settable range: -38011~27524;
Span adjust [Ro.5Pn]: Fine Span Adjustment for Analog Output; Settable range: -38011~27524;

RS 485 Communication(option)
The RS485's protocol is Modbus RTU mode, and baud rate up to 38400 bps. It's convenience to remote monitoring, display for reading.

Remote display:

The meter will show the value that received from RS485 command. In past, The meter normally receive $4 \sim 20 \mathrm{~mA}$ or $0 \sim 10 \mathrm{~V}$ from AO or digital output from BCD module of PLC. We support a new solution that PV shows the value from RS485 command of master so that can be save cost and wiring from PLC.
When the [d5PLY] set to be RS485, it means, the PV screen will show the number from RS485 command \& data. The data (number) will be same as PV that will compare with set-point, analogue output and ECI functions so that is to control analogue output, relay energized and so on.
CS1 APPLICATION FOR REMOTE DISPLAY FROM RS485 COMMAND

■ERROR MESSAGE

BEFORE POWER ON, PLEASE CHECK THE SPECIFICATION AND CONNECTION AGAIN.
SELF-DIAGNOSIS AND ERROR CODE:

DISPLAY	DESCRIPTION	REMARK
ouFL	Display is positive-overflow (Signal is over display range)	(Please check the input signal)
-ouFL	Display is negative-overflow (Signal is under display range)	(Please check the input signal)
ouFL	ADC is positive-overflow (Signal is higher than input 120\%)	(Please check the input signal)
-ouFL	ADC is negative-overflow (Signal is lower than input -120\%)	(Please check the input signal)
$E E P \quad \& \mathrm{FR} \mathrm{L}$	EEPROM occurs error	(Please send back to manufactory for repaired)
R L.กU $\rightleftharpoons P_{\text {u }}$	Calibrating Input Signal do not process	(Please process Calibrating Input Signal)
R L $\stackrel{\text { FR L }}{ }$	Calibrating Input Signal error	(Please check Calibrating Input Signal)
	Calibrating Output Signal do not process	(Please process Calibrating Output Signal)
RoL $\quad \Leftarrow$ FR L	Calibrating Output Signal error	(Please check Calibrating Output Signal)

■FRONT PANEL:

Numeric Screens

$0.8^{\prime \prime}(20.0 \mathrm{~mm})$ red high-brightness LED for 5 digital present values.
I/O Status Indication

- Relay Energized: 1 square red LED

RL1 display when Relay 1 energized;

- RS485 Communication: 1 square orange LED

COM will flash when the meter is receive or send data, and COM flash quickly means the data transient quicker.

- Max/Mini Hold indication: 2 square orange LEDs

Whild displayed: When the display function has been selected in Maximum or Minimum Hold function.
Stickers:
Each meter has a sticker what are functions and engineer label enclosure.

- Relay energized mode: 1 IT TI LO LL DO
- Down key functions mode:

PIVH PV.H(PV Hold) / Tave Tare / D DI(Digital Input)
Mif M.RS(Maximum or Minimum Reset) /
B.if R.RS(Reset for Relay Latch)

- Engineer Label: over 80 types.
\square Operating Key: 4 keys for Benter(Function) / \square Shift(Escape) / Qup key / PDown key

	Setting Status	Function Index
SUp key	Increase number	Go back to previous function index
Down key	Decrease number	Go to next function index
Shey	Shift the setting position	Go back to this function index, and abort the setting
Enter/Fun	Setting Confirmed and save to EEProm	From the function index to get into setting status

- Pass Word: Settable range:0000~9999;

User has to key in the right pass word so that get into [Programming level]. Otherwise, the meter will go back to measuring page. If user forgets the password, please contact with the service window.
\square Function Lock: There are 4 levels programmable.

- None nonE: no lock all.
- User Level USEr: User Level lock. User can get into User Level for checking but setting.
- Programming Level En[: Programming level lock. User can get into programming level for checking but setting.
- ALL RLL: All lock. User can get into all level for checking but setting.
- Front Key Function:
- The קKey can be set to be -EL.Pu / Pu.HLd/ $/ \overline{\text { n.r } 5 t /-4 . r S t}$ programmable.

■ OPERATING DIAGRAM (The detail description of operation, Plesae refer to operating manual)

Plesae refer to operating manual for detail description.

