- DESCRIPTION

CS3-PR Process Indicator has been designed in miniature size ($24 \times 48 \mathrm{~mm}$), and provide high accuracy 0.04% measurement, display and communication of DC signal $0 \sim 10 \mathrm{~V}$ and $4(0) \sim 20 \mathrm{~mA}$.
They are also to build 2 Relay outputs, 1 External Control Input, 1 Analogue output or 1 RS485(Modbus RTU Mode) interface with versatile functions such as control, alarm, re-transmission or communication.

Miniature Indicator(24x48mm)

- FEATURE

- Measuring linear signal 0~10V / 0(4)~20mA(with Square Root function) in one controller
- 2 relay can be programmed individual to be a Hi / Lo / Hi Latch / Lo Latch energized with Start Delay / Hysteresis / Energized \& De-energized Delay functions, or to be a remote control.
- Analogue output or RS 485 communication port available in option
- 1 external control input can be programmed to be Relative PV(Tare) / PV Hold / DI (remote monitoring) / Reset for Maximum or Minimum Hold / Reset for Relay Energized Latch....
- CE Approved
- APPLICATIONS

Process control, alarm and monitoring Machinery indication, control and alarm
Test equipments
Central monitoring panel
■ ORDERING INFORMATION

TECHNICAL SPECIFICATION

Input

Measuring Range	Input Impedance	Measuring Range	Input Impedance
Voltage $0 \sim 10 \mathrm{~V}$	$\geq 1 \mathrm{M}$ ohm	Current 4 4(0) 20 mA	250 ohm
$>$ The Meter can be 0 $\sim 10 \mathrm{~V}$ and 0 020 mA in one unit, according to connection \#1 or \#2			
Calibration:	Digital calibration by front key		
A/D converter:	16 bits resolution		
Accuracy:	$\leq \pm 0.04 \%$ of $\mathrm{FS} \pm 1 \mathrm{C}$;		
Sampling rate:	15 cycles/sec		
Response time:	$\leq 100 \mathrm{msec}$.(when the AvG = "1") in standard		
Input type:	$0 \sim 10 \mathrm{~V} / 0 \sim 5 \mathrm{~V} / 1 \sim 5 \mathrm{~V} / 0-10 \mathrm{~mA} / 0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$ programmable for coding AV(option)		
Input range:	Input High and Low programmable with square root function Ai.Hi: Settable range: $0.00 \sim 100.00 \%$ of input range		

Reading Stable Function

Average:	Settable range: $1 \sim 99$ times
Moving average:	Settable range: 1 (None) 10 times
Digital Filter:	Settable range: 0 (None)/1~99 times

Digital Filter: Settable range: 0 (None)/1 $1 \sim 9$ times
Control Functions(option)
Set points: Two set-points

Control relay: $\quad 2$ Relays FORM-C, 1A/230Vac, 3A/115V
Relay energized mode: Energized levels compare with set-points: Hi / Lo / Hi.HLd / Lo.HLd programmable Energized by RS485 command of master: DO programmable
Energized functions: Start delay / Energized \& De-energized delay / Hysteresis Energized Latch
Start band(Minimum level for Energizing): 0~9999counts Start delay time: $0: 00.0 \sim 9$ (Minutes):59.9(Second) Energized delay time: 0.000.0-9(Minutes):59.9(Second) De-energized delay time: $0.00 .0-9$ (Minutes):59.9(Second) Hysteresis: $0 \sim 5000$ counts

Display range: Scaling function:

Decimal point:
Over range indication: Under range indication: Max / Mini recording: Display functions: Front key functions: Low cut:
Digital fine adjust: -19999~+29999;
Lo.SC: Low Scale; Settable range: -19999~+29999 Hi.SC: High Scale; Settable range: -19999~+29999 Programmable from 0 / 0.0 / 0.00 / 0.000 / 0.0000 ovFL, when input is over 20% of input range Hi -ovFL, when input is under 20% of input range Lo Maximum and Minimum value storage during power on. PV / Max(Mini) Hold / RS 485 programmable Up key can be set to be a function as ECI. 1 Settable range: -19999~29999 counts Pv.Zro: Settable range: -19999~+29999 Pv.SPn: Settable range: -19999~+29999

External Control Inputs(ECI)
Input mode: $\quad 1 \mathrm{ECl}$ points, Contact or open collect input, Level trigger
Functions: Relative PV(Tare)/PV Hold/Reset for Max or Mini. Hold/
DI/ Reset for Relay Energized latch
Settable range $5 \sim 255 \times 8 \mathrm{~m}$ seconds
Analogue output(option)
Accuracy: $\leq \pm 0.1 \%$ of F.S.;

Ripple: $\quad \leq \pm 0.1 \%$ of F.S.
Response time: $\quad \leq 100 \mathrm{msec}$. ($10 \sim 90 \%$ of input)
Isolation:
Output range:

Output capability:

Current: 4(0) -20mA: $\leq 600 \Omega$ max

Functions:

Digital fine adjust:

Ao.HS(output range high): Settable range: -19999~29999
Ao.LS(output range Low): Settable range: -19999~29999
Ao.LMt(output High Limit): 0.00~110.00\% of output High
Ao.Zro: Settable range: -38011~+27524
Ao.SPn: Settable range: -38011~+27524
RS 485 communication(option)

Protocol:
Baud rate:
Data bits:
Parity:
Device no:
Remote display:
Distance:
Terminate resistor:
Electrical Safety
Dielectric strength:
Insulation resistance:
Isolation:
EMC:
Safety(LVD):
Environmental
Operating temp.:
Operating humi.(\%RH):
Temp. coefficient:
Storage temperature:
Enclosure:

Mechanical

Dimensions:
Panel cutout:
Case materiel:
Mounting:
Terminal block:

Weight:

Power
Power supply:
Excitation supply:
Power consumption:
Back up memory:

Modbus RTU mode
1200/2400/4800/9600/19200/38400 programmable
8 bit
Even, odd or none (with 1 or 2 stop bit) programmable
1 ~ 255 programmable
to show the value from RS485 command of master 1200M
150Ω at last unit.

AC 1.5 KV for 1 min, Between Power / Input / Output / Case $\geq 100 \mathrm{M}$ ohm at 500 Vdc , Between Power / Input / Output Between Power / Input / Relay / E.C.I./ Analogue or RS485 EN 55011:2002; EN 61326:2003
EN 61010-1:2001
$0 \sim 60^{\circ} \mathrm{C}$
20~95 \%RH, Non-condensing
$\leq 100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
$-10 \sim 70^{\circ} \mathrm{C}$
Front panel: IEC 549 (IP54); Housing: IP20

48mm(W) x $24 \mathrm{~mm}(\mathrm{H}) \times 102 \mathrm{~mm}(\mathrm{D})$
$45 \mathrm{~mm}(\mathrm{~W}) \times 22.5 \mathrm{~mm}(\mathrm{H})$
ABS fire-protection (UL 94V-0)
Panel flush mounting
Plastic NYLON 66 (UL 94V-0)
5A 300Vac, M2.0, $0.5 \sim 1.3 \mathrm{~mm}^{2}(22 \sim 16 \mathrm{AWG})$
About 110g

ADH: AC 85~265V, DC 100~300V or ADL: DC 20~56V
DC $24 \mathrm{~V}, 30 \mathrm{~mA}$ maximum in standard
4.5VA max.

By EEPROM

FRONT PANEL

■ DIMENSIONS

INSTALLATION

The meter should be installed in a location that dose not exceed the maximum operating temperature and provides good air circulation.

PANEL CUT-OUT:
$\underline{45}^{+0.2}(\mathrm{~W}) \times 22.5^{+0.2}(\mathrm{H})$

■ CONNECTION DIAGRAM

Please check the voltage of power supplied first, and then connect to the specified terminals. It is recommended that power supplied to the meter be protected by a fuse or circuit breaker.

■ FUNCTIONS DESCRIPTION

Input \＆Scaling Functions

Dual input types：（Option Code：AV）
Voltage and Current type are in one unit available in option．If the customer specify the input coding for AV，the meter will be calibrated for $0 \sim 10 \mathrm{~V}$ and $0 \sim 20 \mathrm{~mA}$ in factory．The user can use in $0 \sim 10 \mathrm{~V}$ and $4(0) \sim 20 \mathrm{~mA}$ by difference terminals connection（\＃1 \＆\＃3 for 0～10V or \＃2 \＆\＃3 for 4（0）～20mA）and programming in 【R ．t YP】 of 【inPut Groupl

Input range：

The meter has to be specified and fixed according to ordering code （ex． $0 \sim 10 \mathrm{~V}$ or $4(0) \sim 20 \mathrm{~mA}$ ）in factory．If the meter has to install in difference range of input，the meter can be set in function $A_{\text {，Lo }}$ and R，H，in【inPUL GroUP】 to meet the input signal． For example：The meter is $0 \sim 10 \mathrm{Vdc}$ input，and the signal from sensor is $2 \sim 10 \mathrm{Vdc}$ ．Please get into【inPut Group】to set 8 i．Lo （Analogue input Low）to be $20.00 \%(10 \mathrm{~V} \times 20.00 \%=2 \mathrm{~V})$ ，then the meter has been changed the input range to $2 \sim 10 \mathrm{Vdc}$ and the all relative parameters will work base on 2～10V．The meter doesn＇t need re－calibration after change the $A_{1 . L}$ and $R_{1 . H_{1}}$

＊The setting may course display lower resolution．Please set lower resolution when the input signal has been high compressed．
Square root function：
The function can be set no or YES in【inPUt GrouP】 to measure the signal from differential pressure flow－meter．
The formula $=\sqrt{ }(\mathrm{Pv} / \mathrm{HS}) \times \mathrm{HS}$
Scaling function：
The high and low of display range can be programmable to relative input signal hiah and low．
Setting the Lo．5C（Low scale）and H．5C（High scale）in I inPut Grould to relative input signal．Reverse scaling will be done too． Please refer to the figure as below，

Max／Mini recording：The meter will storage the maximum and minimum value in【User Level】during power on in order to review drifting of PV．
Display functions：
（Please refer to step A－10）

PV／Max（Mini）Hold／RS 485 proarammable in
dSPLy function in【inPUL GroUP】
Present Value P_{u} ：The display will show the value that relative to Input signal．
Maximum Hold $\overline{\mathrm{n} R ५ . \mathrm{H} / \text { Minimum Hold } \overline{\mathrm{h}} \text { in } \mathrm{I} . \mathrm{H} \text { ：}}$ The meter will keep display in maximum（minimum） value during power on，until manual reset by front key in【User Level】，【E．C．I】 close by rear terminal（according．to setting，please refer to the function of E．C．I．Group）or or press front up key to Reset（Up key set to be same function as ECI1）
$>$ Please find the ［ill sticker that enclosure the package of the meter to stick on the left side of square orange LED．

Max．（Mini．）Hold \＆Reset

Remote Display by RS485 command r5485：The meter will show the value that received from RS485 command．In past，The meter normally receive 4～20mA or 0～10V from AO or digital output from BCD module of PLC．We support a new solution that PV shows the value from RS485 command of master can so that can be save cost and wiring from PLC．
PV Hold Pu．HLd：【E．C．I．】 can be set to be Pu．HLd function（Please refer to the function of ECI Group）．The display will be hold，when the E．C．I．is closed．
＞Please find the ECI RIIIsticker to stick on the left side of square green LED．

Low cut：
If the setting value is positive，it means when the absolutely value of $\mathrm{PV} \leq$ Setting value，the display will be 0 ．If the setting value is negative，it means when the PV under setting value（PV \leq－Setting value），the display will be setting value．

Digital fine adjustment：

Users can get Fine Adjustment for Zero \＆Span of PV by front key of the meter，and＂Just Key In＂the value which user want to show in the current input signals．
Especially，the【Pu．？ r_{o} 】\＆ $\mathrm{P}_{\mathrm{P}} .5 \mathrm{P}_{\mathrm{n}}$ 】are not only in zero \＆span of PV， but also any lower point for $\left[P_{u} . P_{r o l}\right.$ I \＆higher point for $\left[P_{u} .5 P_{n} 】\right.$ ．The meter will be linearization for full scale．
The adjustment can be clear in function【P．S．CLr】

Reading Stable Function

Average：
Basically，the sampling rate of meter is 15 cycles／sec．If the function set to be 3 times，It means the meter will update of display will be 5 times／sec．

Moving average

If the function to be set 3 times，the meter will update delay in first 3 samples，then it will update 15 times／sec．continuously．

Moving Average set to be 3

Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6

In first 3 samples，Display Update Value $=($ Sample $1+$ Sample $2+$ Sample 3）／3 $\underbrace{\text { 4 }}_{\text {Display Update Value }=(\text { Sample } 2+\text { Sample } 3+\text { Sample 4）／3 }}$
$\underbrace{}_{\text {Display Update Value }=(\text { Sample } 3+\text { Sample } 4+\text { Sample 5）} / 3}$
$\underbrace{}_{\text {Display Update Value }=(\text { Sample } 4+\text { Sample } 5+\text { Sample 6）／3 }}$
Remark：The higher moving average setting wouldn＇t cause the response time of Relay and Analogue output slower after first 3 samples．

Digital filter： The digital filter can reduce the magnetic noise in field．

Control Functions（option）

Relay energized mode：

In all CS series，the relay functions are not only for alarm or control but also for I／O interface as like as I／O of PLC．They can be programmed to be Hi（Latch）／Lo（Latch）energized to compare with set－point or DO to be energized by RS485 command directly．

Energized with set－points：

Hi／Lo／Hi．HLd／Lo．HLd programmable
Hi：Relay will energize when PV＞Set－Point
Lo：Relay will energize when PV＜Set－Point
Hi／Lo Relay Energized

Hi．HLd（Lo．HLd）：When the PV Higher（or lower）than set－point，the relay will be energized and latch until manual reset by from key in【User Level】，up key （If up key function has been set）or【E．C．I．】 close by rear terminal．

Energized by RS485 command of master：DO function The DO function was designed to get remote control by RS485 command of master．The typical application is to control a switch in field from computer center as like as digital output（DO）of PLC．
Energized functions：Start delay／Energized \＆De－energized delay／Hysteresis

External Control Inputs（ECI）

The one external control input is programmable to perform specific meter control or display functions．The E．C．I．has been designed in level trigger actions．Please pay attention，the ECI input will be disable while UP or Down Key has been set to be＂YES＂
Functions：
Relative PV／PV Hold／Reset Max or Mini．Hold／DI／ Reset for Relay Energized latch；programmable Relative PV or Tare：The E．C．I．can be set to be－EL．PU function．When the E．C．I．is closed，the reading will show the differential value until it＇s open．
PV Hold：The E．C．I．can be set to be Pu．HL d function． The display will be hold when the E．C．I．is closed， until the E．C．I．is to be open．Please refer to the figure on following；

PV Hold \＆Reset

Reset for Maximum or Minimum Hold：When the【dSPLY】function in【inPUL GrouP】 selected $\bar{n} \mathrm{~A} \zeta . \mathrm{H}$ or $\overline{\mathrm{n}}$ in,.. H ，the display will show Maximum or Minimum value，and can be reset
by the E．C．I．Please refer to the figure as below；

DI：The E．C．I can be set to be d function．when the meter build in RS485 port，It is easier to get remote monitoring a switch status through the meter as like as DI of PLC．
Reset for Relay Energized Latch：If relay energized mode has set to be Energized latch H, HL d Lo．HLd），the E．C．I．can be set to be r Y．rst When the PV meets the condition of relay energizing， the relay will be energized and latch until the E．C．I is closed．

Debouncing time：

The function is for avoiding noise signal to into the meter．And The basic period is 8 m seconds．It means you set the number that has to multiple 8 m seconds．For example：
【dEbnโ】set to be 5 ，it means $5 \times 8 \mathrm{~m}$ seconds $=40 \mathrm{~m}$ seconds

Analogue output（option）

Please specify the output type either an o～10V or 4（0）～20mA in ordering．The programmable output low and high scaling can be based on various display values．Reverse slope output is possible by reversing point positions．
Output range：\quad Voltage： $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} / 1 \sim 5 \mathrm{~V}$ programmable Current：0～10mA／0～20mA／4～20mA programmable Ao．HS（output range high）：setting the Display value High to versus output range High（as like as 20 mA in 4～20）
Ao．LS（output range Low）：setting the Display value Low
to versus output range Low（as like as 4mA in 4～20）

The range between Ao．HS and Ao．LS should be over 20% of span at least；otherwise，it will be got less resolution of analogue output．

Ao．LMt（output High Limit）：0．00～110．00\％of output High User can set the high limit of output to avoid a damage of receiver or protection system．

Fine zero \＆span adjustment

Users can get Fine Adjustment of analogue output by front key of the meter．Please connect standard meter to the terminal of analogue output．To press the front key（up or down key）of meter to adjust and check the output．

【Ro．アro】：Fine Zero Adjustment for Analogue Output； Settable range：－38011～27524；
【Ro．5Pn】：Fine Span Adjustment for Analogue Output； Settable range：－38011～27524；

RS 485 Communication（option）

The RS485＇s protocol is Modbus RTU mode，and baud rate up to 38400 bps．It＇s not only convenience to remote monitoring，display for reading and ECI status，but also for remote control in the case that doesn＇t have any DIO device in the field．

Remote display：
to show the value from RS485 command of master
The meter will show the value that received from RS485 command． In past，The meter normally receive 4～20mA or 0～10V from AO or digital output from BCD module of PLC ．We support a new solution that PV shows the value from RS485 command of master so that can be save cost and wiring from PLC．
When the【dSPLY】set to be RS485，it means，the PV screen will show the value from RS485 command \＆data．The data（number）will be same as PV that will compare with set－point，analogue output and ECI functions so that is to control analogue output，relay energized and so on．
REMOTE DISPLAY FFROM RS485 COMMAND

Calibration System calibration by front key．The process of calibration， please refer to the operating manual

■ ERROR MASAGE

DESCRIPTION	DISPLAY	FLASH	REMARK
BEFORE POWER ON，PLEASE CHECK THE SPECIFICATION AND CONNECTION AGAIN．			
SELF－DIAGNOSIS AND ERROR CODE：			
auFL ：Display is positive－overflow（Signal is over display range）	FL		（Please check the input signal）
－uFL ：Display is negative－overflow（Signal is under display range）	－ouFL		（Please check the input signal）
QuFL：ADC is positive－overflow（Signal is higher than input high 20\％）	－uFL		（Please check the input signal）
－ロ LIFL ：ADC is negative－overflow（Signal is lower than input low 20\％）	－ouFL		（Please check the input signal）
$E E P, F R, L$ ：EEPROM occurs error	EEP	FR L	（Please send back to manufactory for repaired）
	R［L．ח．	Pu^{\prime}	（Please process Calibrating Input Signal）
R IL．／FR，L ：Calibrating Input Signal error	R ¢．	FR	（Please check Calibrating Input Signal）
RoL．n［1 $\quad P_{u}$ ：Calibrating Output Signal do not process	RoL．п¢	P_{-1}	（Please process Calibrating Output Signal）
R ，L．／FR IL ：Calibrating Output Signal error	R L．	FR ル	（Please check Calibrating Output Signal）

FRONT PANEL：

Numeric Screens

$0.4 "(10.0 \mathrm{~mm})$ red high－brightness LED for $42 / 3$ digital present value．
I／O Status Indication
－Relay Energized： 2 square red LED
RL1 display when Relay 1 energized；
RL2 display when Relay 2 energized；
－External Control Input Energized： 1 square green LED
EEII display when E．C．I． 1 close（dry contact）
－RS485 Communication： 1 square orange LED
COM will flash when the meter is receive or send data，and COM flash quickly means the data transient quicker．

Stickers：

Each meter has stickers what are functions and engineer
label enclosure．
－Relay energized mode：［IT IT LO LI DO
－E．C．I．functions mode：
PIU PV．H（PV Hold）／Tare／DI DI（Digital Input）／
［I．RS M．RS（Reset for Maximum or Minimum hold）／
B． 1 R R．RS（Reset for Relay Latch）
－Engineer Label：over 80 types．

Operating Key： 4 keys for 且Enter（Function）／ ？Shift（Escape）／Qup key／PDown key

	Setting Status	Function Index
Qup key	Increase number	Go back to previous function index
VDown key	Decrease number	Go to next function index
8Shift key	Shift the setting position	Go back to this function index \＆abort the setting
$\begin{aligned} & \text { Enter/Fun } \\ & \text { key } \end{aligned}$	Setting Confirmed and save to EEProm	From the function index to get into setting status

－Pass Word：Settable range：0000～9999；
User has to key in the right pass word so that get into
【Programming Level】．Otherwise，the meter will go back to measuring page．If user forgets the password，please contact with our service window．
Function Lock：There are 4 levels programmable．
－None：no lock all．
－User Level：User Level lock．User can get into
User Level for checking but setting．
－Programming Level：Programming level lock．
User can get into programming level for checking but setting．
－ALL：All lock．User can get into all level for checking but setting．
Front Key Function
－The BKey can be set to be the same function as the setting of ECI1．
Ex．The ECI1 set to be Pu．HLd and the function E．1＝UP set to be YE5 in【ECI GroUP】．When user presses QKey，the
PV will hold as like as ECI1 close．
＞If the front key function has been set，the terminal input for ECI will be disabling．

■ OPERATING DIAGRAM(The detail description of operation, please refer to operating manual.)

[^0]
[^0]: > PLesae refer to operating manual for detail description

