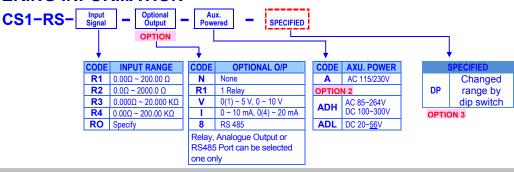
RESISTANCE Indicator 51-RS

DESCRIPTION

CS1-RS economic type Resistance Indicator has been designed with high accuracy measurement, display and communication of Ohm(2 wire) as like as Coil of motor or transformer.

☑ The meter supports Field Calibration function. It can be calibrated with sensor (Resistance) to meet machinery structure.

They are also available 1 option of 1 Relay outputs, 1 Analogue output or 1 RS485 (Modbus RTU Mode) interface with versatile functions such as control, alarm, re-transmission or communication for a wide range of machinery and testing equipments applications.


FEATURE

- Measuring resistance $0 \sim 200\Omega/2000\Omega/20.0K\Omega/200.0K\Omega$ (2 wire) changeable by dip switch on rear of meter
- Field calibration with resistance to meet the system requirement
- Option available 1 of 1 relay, 1 analogue output or RS485(Modbus RTU mode)
- 1 relay can be programmed individual to be a Hi / Lo / Hi Latch / Lo Latch energized with Start Delay / Hysteresis / Energized & De-energized Delay functions.
- Analogue output or RS 485 communication port in option
- CE Approved & RoHS

APPLICATIONS

- Testing Equipments for resistance (as like as coil of motor, transformer, relay ...) Measuring, Alarm or Communication with PC/PLC.
- Components of resistance online testing station.

ORDERING INFORMATION

TECHNICAL SPECIFICATION

Input		
Measuring Range	Input Impedance	
0.0 Ω ~ 200.00 Ω (2 wire)		
0.0 Ω ~ 2000.0 Ω (2 wire)		
0.00 Ω ~ 20.000 KΩ (2 wire)	── ≥1M ohm	
0.00 Ω ~ 200.00 KΩ (2 wire)		
Above renges can be changed by din switch on rear of meter		

Above ranges can be changed by dip switch on rear of meter.

Calibration: Field calibration:

A/D converter:

Sampling rate:

Response time:

Accuracy:

Digital calibration by front key Calibration with sensor input high & low to meet system structure. And field calibration reset is not change the accuracy & linear of factory calibration. 16 bits resolution $\leq \pm 0.04\%$ of FS $\pm 1C$; 15 cycles/sec ≤100 m-sec.(when the AvG = "1") in standard

Se <u>C</u> Re **Display & Functions** Numeric: 5 digits, 0.8"(20.0mm)H red high-brightness LED LED: Relay output indication: 1 square red LED Er RS 485 communication: 1 square orange LED E.C.I. function indication: 1 square green LED Max/Mini Hold indication: 2 square orange LED Down key function indication (Reset for Max.(Mini.) Hold / PV Hold / Relative PV): 1 square green LED **Display range:** -19999~29999;

Scaling function:

Decimal point: Over range indication: Under range indication: Max / Mini recording: **Display functions:** Front key functions:

Low cut: Digital fine adjust:

PuPro: Settable range: -19999~+29999 PuSPn: Settable range: -19999~+29999

Reading Stable Function Settable range: 1~99 times

Average: Moving average: Settable range: 1(None) ~10 times **Digital filter:** Settable range: 0(None)/1~99 times

Control Functions(option)

et-points:	One set-point
ontrol relay:	1 Relay, FORM-C, 5A/230Vac, 10A/115V
elay energized mode:	Energized levels compare with set-points:
	Hi / Lo / Hi.HLd / Lo.HLd programmable
nergizing functions:	Start delay / Energized & De-energized delay / Hysteresis /
	Energized Latch
	Start band(Minimum level for Energizing): 0~9999counts
	Start delay time: 0:00.0~9(Minutes):59.9(Second)
	Energized delay time: 0.00.0~9(Minutes):59.9(Second)
	De-energized delay time: 0.00.0~9(Minutes):59.9(Second)
	Hysteresis: 0~5000 counts

Lo.5C: Low Scale; Settable range: -19999~+29999

H .SC: High Scale; Settable range: -19999~+29999 Programmable from 0 / 0.0 / 0.00 / 0.000 / 0.0000

ouFL, when input is over 20% of input range Hi

PV / Max(Mini) Hold / RS 485 Programmable

Settable range: -19999~29999 counts

-ouFL, when input is under -20% of input range Lo

Maximum and Minimum value storage during power on.

Relative PV / PV Hold / Reset for maxi(mini) hold / Reset for relay energized latch programmable

Analogue output(option)

Accuracy:	≤± 0.1% of F.S.;
Ripple:	≤± 0.1% of F.S.
Response time:	≤100 m-sec. (10~90% of input)
Isolation:	AC 2.0 KV between input and output
Output range:	Specify either Voltage or Current output in ordering
	Voltage: 0~5V / 0~10V / 1~5V programmable
	Current: 0~10mA / 0~20mA / 4~20mA programmable
Output capability:	Voltage: 0~10V: ≥ 1000Ω;
	Current: 4(0)~20mA: ≤ 500Ω max
Functions:	RoHS (output range high): Settable range: -19999~29999
	RoLS (output range Low): Settable range: -19999~29999
Digital fine adjust:	RoPro: Settable range: -38011~+27524
	Ro.5Pn: Settable range: -38011~+27524

RS 485 Communication(option)

Modbus RTU mode Protocol: 1200/2400/4800/9600/19200/38400 programmable **Baud rate:** 8 bits Even, odd or none (with 1 or 2 stop bit) programmable 1 ~ 255 programmable to show the value from RS485 command of master Remote display: 1200M Distance: Terminate resistor: 150Ω at last unit

EN 55011:2002; EN 61326:2003

20~95 %RH, Non-condensing

96mm(W) x 48mm(H) x 72mm(D)

ABS fire-resistance (UL 94V-0) Panel flush mounting

Plastic NYLON 66 (UL 94V-0)

92mm(W) x 44mm(H)

Front panel: IEC 529 (IP52); Housing: IP20

10A 300Vac, M2.6, 1.3~2.0mm2(16~22AWG)

EN 61010-1:2001

0~60 °C

≤100 PPM/°C

-10~70 °C

350a

Electrical Safety

Dielectric strength: Insulation resistance: **Isolation:** EMC: Safety(LVD):

Environmental

Operating temp.: Operating humidity: Temp. coefficient: Storage temp.: Enclosure:

Mechanical

Dimensions: Panel cutout: **Case material:** Mounting: **Terminal block:**

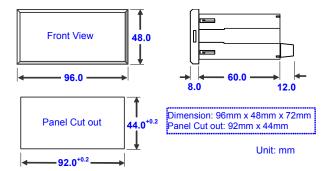
Weight:

Power **Power supply:**

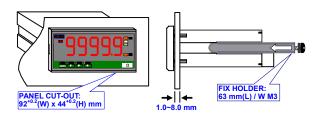
Excitation supply: Power consumption: Back up memory:

AC115/230V,50/60Hz; Optional: AC 85~264V / DC 100~300V or DC 20~56V DC 5/10V. 30mA maximum in standard 3.0VA maximum **By EEPROM**

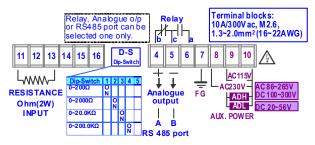
AC 2.0 KV for 1 min, Between Power / Input / Output / Case ≥100M ohm at 500Vdc, Between Power / Input / Output


Between Power / Input / Relay, Analogue, RS485

FRONT PANEL

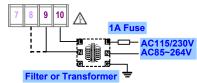

Amend: 2010/4/26: Modify the range and terminals for DC power supply

DIMENSIONS

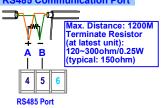


■INSTALLATION

The meter should be installed in a location that does not exceed the maximum operating temperature and provides good air circulation.



CONNECTION DIAGRAM

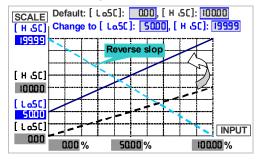


Please check the voltage of power supplied first, and then connect to the specified terminals. It is recommended that power supplied to the meter be protected by a fuse or circuit breaker.

Power Supply

RS485 Communication Port

Data bits: Parity: Address:


CS1-RS

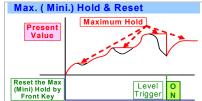
■ FUNCTION DESCRIPTION

Input & Scaling Functions

Scaling function:

Setting the [LoSC] (Low scale) and [H ISC] (High scale) in [InPUL GroUP] to relative input signal. Reverse scaling will be done too. Please refer to the figure as below,

Display & Functions Max / Mini recording:


The meter will storage the maximum and minimum value in [user level] during power on in order to review drifting of PV.

Display functions: (Please refer to step A-07) PV / Max(Mini) Hold / RS 485 programmable in [dSPL 9] function of [inPUL GroUP]

Present Value Pu: The display will show the value that Relative to Input signal. Maximum Hold R Hd / Minimum Hold D und :

> The meter will keep display in maximum (minimum) value during power on, until press front key to reset (If the down key function in [... PUL GroUP] has been set to Trst).

Please find the
 IIII sticker that enclosure the package of the meter to stick on the right side of square orange LED

Remote Display by RS485 command - 5485 :

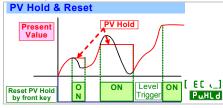
The meter will show the value that received from RS485 sending. In past, The meter normally receive $4 \sim 20$ mA or $0 \sim 10V$ from AO or digital output from BCD module of PLC .We support a new solution that PV shows the value from RS485 command of master can so that can be **save cost and wiring** from PLC.

Relative PV / PV Hold / Reset for maxi(mini) hold / Reset

for relay energized latch programmable in [dntEy]

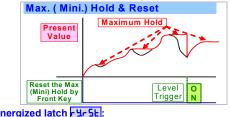
The [dntEy] function can be set to be rELPu function.

function of [inPUE GroUP]


Front key functions:

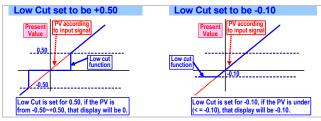
Relative PV FELPu (Tare function)

re function) When user presses the ➡key, the display will show the differential value (ΔPV), until press ➡key again.
 Please find the ➡key to stick on the right side of


PV Hold PuHLd :

- square green LED. The [d theta Y] function can be set to be PuHLd function. When user presses the Rekey, the display will be hold until press the Rekey again.
 - Please find the PLL sticker to stick on the right side of square green LED.

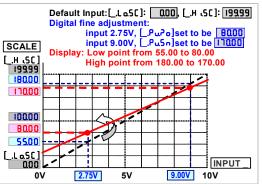
when the [dSPL Y] in [InPUL GroUP] set to be AAAd or Internet of the organization of


Reset for relay energized latch r 4r 5t

when the [r Y Lnd]in [r ELRY GroUP] set to be H HLd or all d, [drutey] function can be set to be ryrst to reset the relay when it is energizing and latching.

Low cut:

If the setting value is positive, it means when the absolutely value of PV ≤ Setting value, the display will be 0. If the setting value is negative, it means when the PV under setting value (PV≤ -Setting value), the display will be setting value.



Digital fine adjustment:

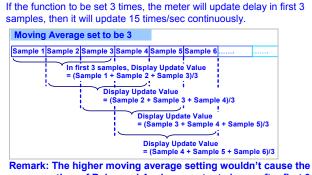
Users can get Fine Adjustment for Zero & Span of PV by front key of the meter, and "Just Key In" the value which user want to show in the current input signals.

Especially, the [Pu?ro] & [PuSPn] are not only in zero & span of PV, but also any lower point for [Pu?ro] & higher point for [PuSPn]. The meter will be linearization for full scale.

The adjustment can be clear in function [P.S.C.L.r.]

Reading Stable Function

Average:


Basically, the sampling rate of meter is 15cycles/sec. If the function set to be 3 times, It means the meter will update of display will be 5 times/sec.

Average set to be 3

Display Update Value = (Sample 1 + Sample 2 + Sample 3)/3		le 3)/3	Display Update Value = (Sample 4 + Sample 5 + Sample 6)/3				
Sample 1	Sample 2	Sample 3	Sample 4	Sample !	Sample 6		

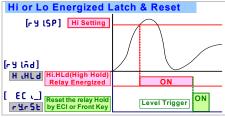
Remark: The higher average setting will cause the response time of Relay and Analogue output slower.

Moving average:

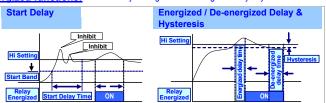
response time of Relay and Analogue output slower after first 3 samples. The digital filter can reduce the magnetic noise in field.

Digital filter:

Control Functions(option)

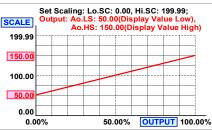

Relay energized mode: Hi H (Fig.1-@): Lo [Lo(Fig.1-@):

Hi / Lo / Hi.HLd / Lo.HLd programmable Relay will energize when PV > Set-Point Relay will energize when PV < Set-Point Hi or Lo Relay Energized Fig.1 [r Y (SP] Hi Setting



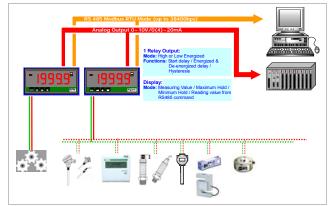
Hi.HLd H .HLd (Lo.HLd LoHLd) :

When the PV is Higher (or lower) than set-point, the relay will be energized and latch until manual reset by from key in [user level] or press down key to reset(If the [dn. 2E] function set to be **- 4- 5**E)


Energized functions: Start delay / Energized & De-energized delay / Hysteresis

Analogue output(option)

Please specify the output type either an o~10V or 4(0) ~20mA in ordering. The programmable output low and high scaling can be based on various display values. Reverse slope output is possible by reversing point positions.


poordonion	
Output range:	Voltage: 0~5V / 0~10V / 1~5V programmable
	Current: 0~10mA / 0~20mA / 4~20mA programmable
Functions:	
Output range high	RoHS
	Setting the Display value High to versus output range High(as
	like as 20mA in 4~20)
Output range low	RoLS
	Setting the Display value Low to versus output range Low(as
	like as 4mA in 4~20)
Fine zero & span adjustr	nent:
Zero adjust [Ro?ro]:	Fine Zero Adjustment for Analog Output;
	Settable range: -38011~27524;
Span adjust [Ro.5Po]:	Fine Span Adjustment for Analog Output;
	Settable range: -38011~27524;

The range between RoHS and RoLS should be over 20% of span at least; otherwise, it will be got less resolution of analogue output.

RS 485 Communication(option)

The RS485's protocol is Modbus RTU mode, and baud rate up to 38400 bps. It's convenience to remote monitoring, display for reading.

Remote display:

The meter will show the value that received from RS485 command. In past, The meter normally receive 4~20mA or 0~10V from AO or digital output from BCD module of PLC .We support a new solution that PV shows the value from RS485 command of master so that can be save cost and wiring from PLC.

When the [dSPLY] set to be RS485, it means, the PV screen will show the number from RS485 command & data. The data (number) will be same as PV that will compare with set-point, analogue output and ECI functions so that is to control analogue output, relay energized and so on.

Calibration

System calibration by front key. The process of calibration, please refer to the operating manual

Field Calibration

In pass time, engineers have take a lot of time to adjust meters or converter to meet the structure of machinery zero and span for the Load Cell measuring. Now, our CS1-RS support easier process to do it called "Field Calibration".

Optional Function

Customize function with quantities is welcome. Please contact with our sales for detail. The appendix code of optional function will be added behind the code of auxiliary power.

ERROR MESSAGE

BEFORE POWER ON, PLEASE CHECK THE SPECIFICATION AND CONNECTION AGAIN.

SELE-DIAGNOSIS	AND ERROR CODE:	
SELI -DIAGNOSIS	AND LINION CODE.	

SELF-DIAGNOSIS AND ERROR CODE:			
DISPLAY	DISPLAY DESCRIPTION REMARK		
ouFL	Display is positive-overflow (Signal is over display range)	(Please check the input signal)	
-ouFL	Display is negative-overflow (Signal is under display range)	(Please check the input signal)	
ouFL	ADC is positive-overflow (Signal is higher than input 120%)	(Please check the input signal)	
-ouFL	ADC is negative-overflow (Signal is lower than input -120%)	(Please check the input signal)	
EEP 🚔 FR iL	EEPROM occurs error	(Please send back to manufactory for repaired)	
R iCinû 🚔 Pu	Calibrating Input Signal do not process	(Please process Calibrating Input Signal)	
R iC 🚔 FR iL	Calibrating Input Signal error	(Please check Calibrating Input Signal)	
ԶօՀոն 🚔 Բս	Calibrating Output Signal do not process	(Please process Calibrating Output Signal)	
RoC 🚔 FR iL	Calibrating Output Signal error	(Please check Calibrating Output Signal)	

FRONT PANEL:

Numeric Screens

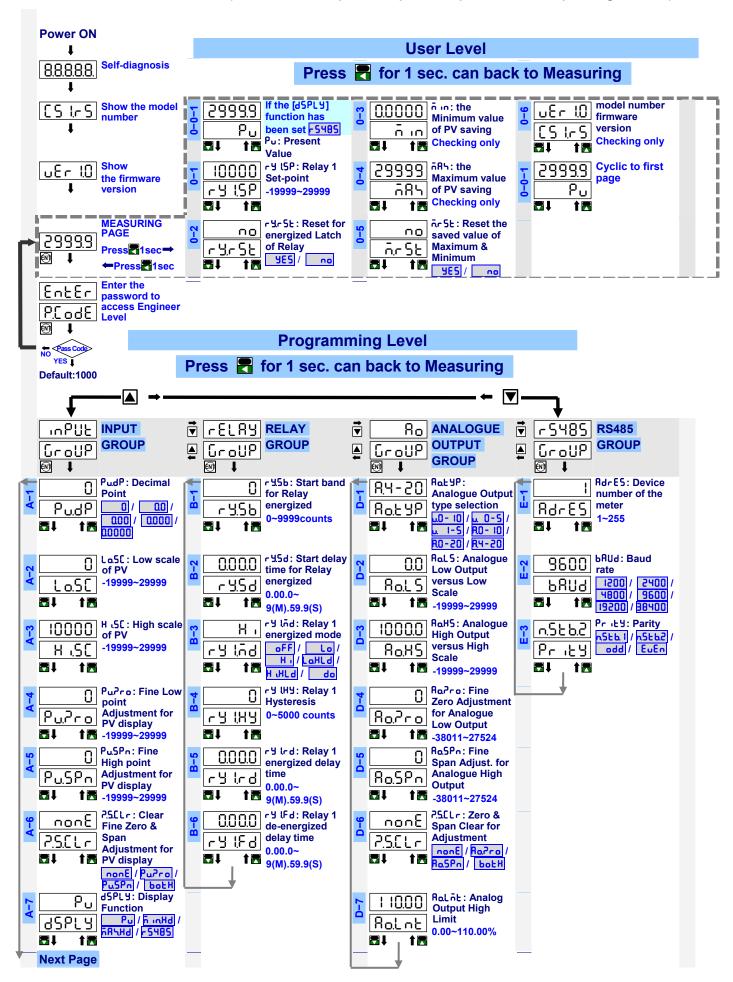
- 0.8" (20.0mm) red high-brightness LED for 4 2/3 digital present values.
- I/O Status Indication
- Relay Energized: 1 square red LED
 RL1 display when Relay 1 energized;
- <u>RS485 Communication</u>: 1 square orange LED
 <u>COM</u> will flash when the meter is receive or send data, and <u>COM</u> flash quickly means the data transient quicker.
- Max/Mini Hold indication: 2 square orange LEDs
 - displayed: When the display function has been selected in Maximum or Minimum Hold function.
- Stickers:

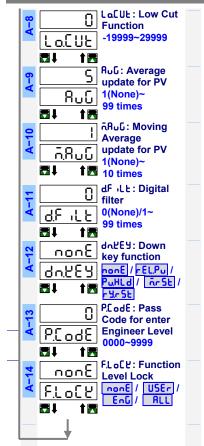
Each meter has a sticker what are functions and engineer label enclosure.

• <u>Relay energized mode:</u> H H H I LO LL DO

- Down key functions mode:
 - PV.H
 PV.H(PV Hold) / Tare / DI DI(Digital Input)

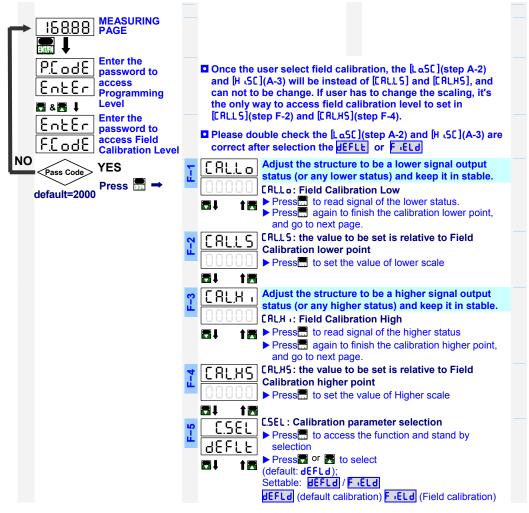
 MRS
 M.RS(Maximum or Minimum Reset) /
 - R.RS (Reset for Relay Latch)
- Engineer Label: over 80 types.
- <u>Operating Key:</u> 4 keys for Enter(Function) / Shift(Escape) / Up key / Down key
- Pass Word: Settable range:0000~9999;
 User has to key in the right pass word so that get into [Programming level]. Otherwise, the meter will go back to measuring page. If user forgets the password, please contact with the service window.
- Function Lock: There are 4 levels programmable.
- None nonE: no lock all.
- <u>User Level</u> <u>USEr</u>: User Level lock. User can get into User Level for checking but setting.
- Programming Level Enc: Programming level lock.
 User can get into programming level for checking but setting.
- ALL RLL: All lock. User can get into all level for checking but setting.
- Front Key Function:
- The Key can be set to be <u>rELPu</u> / <u>PuHLd</u> / <u>nrSt</u> / <u>rYrSt</u> programmable.


OPERATING KEY


*Please access to the Programming Level to check and set the parameters when users start to run the meter

- Operating Key: 4 keys for Enter(Function) / Shift(Escape) / Up key / Down key
- The meter has designed operation similar as PC's and *meter*. In any page, press key means "enter" or "confirm setting", and press key means "escape(<u>fec</u>)" or "shift".
- In Programming Level, the screen will return to Measuring Page after do not press any key over 2 minutes, or press T for 1 second.

	Function Index	Setting Status
	 (1) In any page, press to access the level or function index (2) From the function index to access setting status 	(3) Setting Confirmed, save to EEProm and go to next function index
😭 (= 🚺) Shift key	 (1) In measuring page, press a for 1 second to access user level. (2) In function index, press a for 1 second to go back upper level. (3) In function group index, press a for 1 second to go back measuring page 	 (4) In setting status, press T to Shift the setting position. (5) In setting status, press f for 1 second to abort setting and go back this function index.
🗭 (= 🚺) Up key	 In function index, press R to go back to previous function index 	 (2) In setting status for function, press a to select function (3) During number Setting, press can roll the digit up
Down key	(1) In Function Index Page, press R will go to the next Function Index Page.	 (2) In setting status for function, press at to select function (3) During number Setting, press an roll the digit down.


• OPERATING DIAGRAM (The detail description of operation, please refer to operating manual.)

Plesae refer to operating manual for detail description

FIELD CALIBRATION

